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Scene-based wave-front sensing for remote imaging

Lisa A. Poyneera, Kai La Fortunea and Carri Chana,b

aLawrence Livermore National Lab, Livermore, CA, USA
bMassachusetts Institute of Technology, Cambridge, MA, USA

ABSTRACT

Scene-based wave-front sensing (SBWFS) is a technique that allows an arbitrary scene to be used for wave-front
sensing with adaptive optics (AO) instead of the normal point source. This makes AO feasible in a wide range
of interesting scenarios. This paper first presents the basic concepts and properties of SBWFS. Then it discusses
that application of this technique with AO to remote imaging. For the specific case of correction of a lightweight
optic. End-to-end simulation results establish that in this case, SBWFS can perform as well as point-source AO.
Design considerations such as noise propagation, number of subapertures and tracking changing image content
are analyzed.

Keywords: adaptive optics, remote imaging, wave-front sensing

1. INTRODUCTION

Adaptive optics (AO) is a technique that corrects in real-time for phase aberrations in an optical system. AO
works successfully in many areas, including astronomical telescopes,1 solar telescopes2, 3 and vision science.
With the exception of solar AO, all these systems use a point-source. There are many interesting cases where the
use of AO is desirable, but no point source is available. These include remote imaging from space and along short
horizontal or slant paths from the ground. This paper focuses on the case where AO can be used to correct for
time-varying aberrations due to a light-weight primary optic. Instead of creating a point source (akin to using a
laser guide star) the observed scene can be used to do wave-front sensing. This technique is called scene-based
wave-front sensing (SBWFS).

This paper is divided into three parts. First, the SBWFS technique is summarized (a detailed analysis can
be found elsewhere4) with an emphasis on remote imaging applications. Next, a detailed model of a light-weight
optics is presented. This model is used in end-to-end AO simulations to study SBWFS performance. Finally,
design considerations and system analysis is conducted.

2. THE SCENE-BASED WAVE-FRONT SENSING ALGORITHM

An AO system using SBWFS is very similar in design to one using a Shack-Hartmann WFS with a point source.
Instead of forming an image of the point source on a small area of the WFS CCD, an image is formed instead.
A field stop in necessary to control field size and prevent overlap on the WFS CCD. Using these subimages, the
average phase gradient is measured in each subaperture across the pupil. If the phase aberration is conjugate to
the pupil, all parts of the subimage have the same point-spread-function (PSF). This means that just as the spot
formed by a point source is shifted by the average phase gradient,5 so is the scene subimage. We assume that
each subimage has a small number of pixels (from 8 to 32, preferentially a power of 2) and is Nyquist sampled.

Given these shifted subimages, it is a signal processing problem as how to best estimate the shifts of each
image. The best technique for determining this estimate is periodic correlation with use of FFTs. The correlation
between two subimages is calculated, and the peak location is estimated with parabolic interpolation. This
allows for the necessary subpixel resolution for shifts. In the general case the reference for correlation is a fixed
subaperture subimage from the same temporal frame. This reference will change with each time step to ensure
the best possible match in image content between subimage and reference.

E-mail: poyneer1@llnl.gov, Telephone: 1 925 423 3360
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2.1. The algorithm

Slope estimation involves computing the cross-correlation of two subaperture images (the reference r[m,n] and
a subimage s[m,n]), finding the maximum and then using that maximum value and the two neighboring values
each to determine the estimate of the shifts x0 and y0 via parabolic interpolation. The random vector C[m,n]
represents the cross-correlation function of these two images. Specifically, this periodic correlation

C[m,n] =
∑

i

∑
j

r[i−m, j − n]s[i, j] (1)

can be computed with FFTs. The maximum of the correlation will be (for whole-pixel shifts) at exactly C[x0, y0].
For subpixel shifts, the maximum of this correlation function is at [∆x,∆y]. We will assume that the maximum
of C[m,n] is with in half a pixel of the actual shift. For a single estimate of the x-slope, parabolic interpolation
is used. This requires the discrete maximum C[∆x,∆y] (as opposed to the true maximum of the continuous
correlation) and the two points bracketing it, C[∆x − 1,∆y] and C[∆x + 1,∆y]. For notational simplicity, these
three points will be referred to as C0 for the maximum and C−1 and C1 for the neighbors. The estimate of the
shift is then:

x̂0 = ∆x +
0.5(C−1 − C1)

C−1 + C1 − 2C0
. (2)

This expression is very difficult to analyze. Because it involves division of random variables, full knowledge of
the probability distributions of C−1, C0, C1 is required to characterize the resulting random variable. Using a
linearization with partial derivatives, the estimate is approximated as

x̂0 ≈ ∆x + [C−1(m1 −m0) + C0(m−1 −m1) + C1(m0 −m−1)
+0.5(m−1 −m1)(m−1 + m1 − 2m0)]× (m−1 + m1 − 2m0)−2. (3)

Since this is a linear combination of random variables, the mean and variance can be determined with knowledge
of only the means and variances of its components. The means, variances and covariances (e.g. m0, σ

2
1) that

appear in the above equations can be easily calculated from the the statistical models of the images.4 Monte Carlo
simulations can also produce estimates of image performance. These agree very closely with analytic predictions.
When error standard deviation is above 0.2 pixels, the analytic results (due to the above approximation) begin
to underestimate the true error.

2.2. Performance in the zero-shift case

A special case worth considering is when the actual shift between the two images is zero. In a closed-loop system,
the image shift will be driven towards null. This simplification also allows easier analysis of slope estimation
behavior as illumination conditions change. In this zero-shift case, the two subimages have identical distributions.
Therefore m−1 = m1 and σ2

−1 = σ2
1 . This reduces the approximation of the estimate [Eqn. 3] to be

x̂0 ≈ ∆x +
C−1 − C1

4(m1 −m0)
(4)

In this special case, the correlation is actually an auto-correlation, so the peak will be at 0 and the means and
variances of C−1 and C1 will be equal. Therefore the estimate is unbiased. The variance is

σ2
x =

σ2
1 − σ2

−1,1

8(m0 −m1)2
. (5)

The most important term in this equation is the denominator term (m0 −m1). As described above, m0 is the
expected value of the maximum of the correlation function (C0) and m1 is the expected value one pixel to the
side (C1). The (m0 −m1) term is then a measure of the sharpness of the correlation peak. The sharper this
peak, the lower the error variance. The correlation function is paired with its Fourier transform partner: the
power spectral density. The more impulse-like the correlation function (hence the sharper the peak) the broader
the frequency content of the image. This is consistent with the notion that images with more high-frequency
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Figure 1. Three sample scenes shown at different resolutions and numbers of pixels. From left to right are 32, 16, and 8
pixel-on-a-side Nyquist-sampled subimages, with the diffraction limit doubling at each step.

content perform better. In the zero-shift case, all that is needed to calculate the error variance of the estimate is
knowledge of the subimage statistics. These can be quickly calculated. When done for a wide range of images,
the predicted slope estimate variance σ2

x reveals substantial variation in image quality. Three sample images (at
different resolutions) are shown in Fig. 1.

For each image three different Nyquist-sampled versions are shown, for increasing diffraction limit. This
is equivalent to maintaining the same field of view and WFS sampling relative to the diffraction limit while
increasing the number of subapertures across the pupil. These three versions are 32, 16 and 8 pixels on a side.
For a given size, the performance of these three scenes is quite different. The rms estimation errors σx and σy

are calculated based on the above formula for the zero-shift case. We assigned each image a dynamic range from
a minimum of 0 counts received to a maximum of 500 counts recevied per pixel. For Image 1, σx = 0.013 and
σy = 0.011 pixels. For Image 2 σx = 0.009 but σy = 0.019 pixels. The image is much worse in the y-direction.
The reason for this is clearly visible in the image content: the road runs along the y-direction. A shift of the
image along the road matches well with the reference, because the road is self-similar. Image 3 has σx = 0.013
and σy = 0.008.

None of the analysis above explicitly took in to account the total number of pixels. The performance of a
scene is dependent on the frequency content, meaning that a very important design factor is the feature size in
the subimage given the system’s field of view and resolution. Image 2 is also a good example of this. In the
32× 32 version small features (which are cars) are clearly visible. By the time the image is down to the smallest
size, σy has degraded to 0.087 pixels, even is this well-illuminated case. That’s 4.5 times worse than the image
at the higher resolution.

The above calculations can be done with a single copy of a subimage in a real system, provided that the level
of noise is not too high. This means that on-the-fly estimations of estimation error can be done. An AO system
could scan a larger region for the best possible scene, making the system more robust.

2.3. Dealing with changing amounts of light

Performance of the image depends not only on scene content but on the amount and type of illumination. There
are two major areas of concern. The first is the total amount of light received, which is primarily a function of
the system optical design and the AO control rate. The second is excessive amount of background scatter, which
is due to long paths through the atmosphere and can be exacerbated by low visibility. Performance in both of
these cases can be predicted analytically.

If the maximum pixel count value is paramterized out with factor f (i.e. fλ̃[m,n]), then the formula for error
standard deviation becomes

σx(f) =
1√
f

(σ̃2
1 − m̃1 − σ̃2

−1,1)
1/2

2
√

2(m̃0 − m̃1)
, (6)

which is valid for the case where (f−1)f−1 ≈ 1. In this case the signal-to-noise ratio (SNR) is simply proportional
to
√

f , where f is the maximum amount of light per pixel. The standard deviation of the estimate follows the
same inverse power law to the SNR as quad-cell centroiding with a point-source does.6 Though the constant
of the relationship may be different (and is image dependent), this method of wave-front sensing is statistically
equivalent to the traditional approach using a point source and centroiding.
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Figure 2. Estimate error standard deviation versus illumination profile, Monte Carlo simulation. [Left]: Changing
number of counts received. This curve follows an inverse power law with maximum number of counts. [Right]: Changing
angle of observation down through the atmosphere. As the angle increases off normal, the total light decreases and the
amount of light in the background dramatically increases.

The case of background illumination can be modeled with a constant parameter b added to the image profile
(i.e. b + fλ̃[m,n]). The estimate error standard deviation in the zero-shift case is

σx(b, f) =

{
Nb2 + 2bf2(m̃0 − m̃2 + t̃f−1) + f3[σ̃2

1 − (f − 1)f−1m̃1 − σ̃2
−1,1]

}1/2

2
√

2f2(m̃0 − m̃1)
, (7)

where N is the total number of pixels in a single subimage and t is another image statistic. It should be noted
that, unlike the simpler case of a scaling of total illumination, the error standard deviation depends now on the
number of pixels in the subimage. Larger images should have worse performance, image content being equal.
Smaller images will do better. The sharpness of the correlation peak is still the dominant term in this expression.
For both of these cases the expectation of the estimate is independent of the illumination profile. SBWFS is
unbiased with respect to background levels, which simplifies the processing of images from the WFS camera.

Analysis was performed to obtain realistic estimates of the amount and type of illumination when observing
through the atmosphere. We used a radiometric model based on the radiative transfer equation with some
simplifying assumptions including single scattering and decoupled downward and upward irrandiances. Using
specific parameters such as path length, angle and visibility, a code was written to generate estimates for the
level of light received from the image and from the background. Light-level estimates were generated for the case
of observing the Earth from space. Results for the two scenarios of changing exposure time and changing angle
of observation off normal to the surface are shown in Fig. 2. For the exposure time case, the number of counts is
assumed to vary linearly with frame rate. This is the inverse-power-law in SNR as described above. For a variety
of scenes performance is very good down to less than 50 counts per pixel. For the angle of observation case, as
the image is seen off-normal through thicker layers of atmosphere the total amount of light received decreases
while the portion of background light increases. Observation at normal has a maximum of 363 total counts and
a background level of 67 counts. In this specific case, once the amount of background light is two-thirds of the
total light received (which occurs in this model near 55 degrees), performance begins to degrade rapidly. In the
general case this cut-off point will depend on the total amount of light received. Longer exposures are more
robust to high background levels than short ones.

2.4. Dealing with larger shifts

Performance can be explicitly analyzed for shifts off-null. Doing so requires direct knowledge or estimation of
the image profile at a given shift. As a general trend across images, both the slope estimation error and the
error standard deviation increase as the actual shift increases from zero pixels. The practical impact of this is
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that a given image may have a higher noise level than indicated by the calculation of σx from a single copy of
the image. This depends on how large the shifts actually are in closed loop. The estimate error also gradually
increases with true shift amount, and peaks around a shift of 0.5 pixels. In closed loop, when shifts are small,
this results in a gain change in the system. The slope estimates will may be, for example, only 90% of the correct
answer. This should result in increased residual error in the system, but this can be ameliorated by increasing
the gain in the control loop.

3. LIGHT-WEIGHT OPTIC AO SIMULATIONS

When the phase aberration is conjugate to the pupil, the above derivation of scene motion based on average phase
gradient is completely valid. Because the aberrations are at the pupil, the entire field of view of each subaperture
is isoplanatic, i.e. the PSF for each part of the image is the same. In this case each subimage is exactly shifted
the way a point-source would be. This is independent of whether or not the object is at infinity (plane wave
propagation assumed) or near the aperture (spherical wave propagation assumed). This isoplanaticity also holds
for image formation at the science camera. Because light from all parts of the image has the same PSF, the
correction of the image field will be uniform.

This scenario is valid in the case of a space-based imaging system with a light-weight optic. The light-
weight optic will cause time-varying phase aberrations in the system. We have conducted complete end-to-end
simulations of the space-based case. The model for the dynamic phase aberration is discussed first, followed by
the end-to-end AO simulation results.

3.1. Light-weight optic phase aberration model

The most practical design for a space-based imaging system would almost certainly be built on reflective optics
but designs including diffractive elements are also currently under consideration. The single most massive element
in such a system, and hence most desirable to replace, would be the primary optic of the imaging telescope.
Designs and prototypes for lightweight reflective optics to replace a conventional primary are already being
developed and characterized. T.W. Barbee, Jr. et. al.7 from LLNL are developing metal nanolaminate thin-
shell mirrors. R.C. Romero et. al.8 from CMA, Inc. are developing carbon fiber reinforced polymer (CFRP)
membranes. Other work has been done at Boeing-Rocketdyne and Air Force Research Lab9 and at the University
of Arizona10 to develop conventional polymer membranes. All of these approaches have conquered the significant
hurdle of obtaining a high optical quality at high spatial frequencies but as the flexibility of a membrane implies,
the long range figure of a mirror made out of such a material would be highly unstable.

There are three primary sources of aberrations in a membrane-type optical surface. The simplest source is
thermal expansion and contraction of the membrane itself, which results in primarily a defocus term. Because
of the elementary nature of this aberration and because it can be removed by a simple repositioning of the
optics (not requiring a fully-fledged deformable mirror for correction), it will not be discussed further here. The
second most elementary form of aberrations in the system are those that fall into the category of ”figuring
error”. These are aberrations that result from errors in the fabrication process be they inhomogeneities in the
membrane material, imperfections in the mandrel, stresses introduced into the membrane when removing it
from the mandrel or from some other unidentified source. The nature of these aberrations are as of yet not
well known, partially because fabrication techniques have not been stabilized but also because the reluctance of
manufacturers to admit any shortcomings in their techniques. The emphasis of recent work has been to prove
the ability to reduce high spatial frequency surface errors that would scatter light. The aberrations from figuring
errors would be of much lower spatial frequency and would also be static. For this second reason, figuring errors
will also not be discussed further because static aberrations are relatively easy to correct.

The third, and most complex, source of aberrations are those introduced by mechanical forces acting on
the membrane. The dynamic mechanical aberrations of a membrane have been known and well-understood for
years. They are simply linear combinations of Bessel functions. The particular combination depends only on the
nature of the excitation of the membrane. We consider a general, and also an inherently worst-case, scenario: a
simultaneous excitation of a linear combination of many modes. The amplitude of the modes was assumed to
decay exponentially with frequency. This is typical behavior as the amplitude of an aberration is limited by a
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Figure 3. Four realizations of the light-weight optic phase aberration model.

membrane’s ability to stretch. If a mode has more zero-crossings, it follows that its maximum excursion must
be smaller. The effective cutoff is adjustable and is set to be the mode where the normalized amplitude is e−1.

Each mode is given a random initial phase and, if there is a theta dependence to the mode, a random initial
angle. Note that initially after any excitation, any set of modes that is excited will be correlated in phase and
angle. They will, however, decorrelate over time. The purpose is not to model transients in the system that may
interrupt imaging momentarily but to model persistent, albeit dynamic, aberrations. As such, the amplitude of
the aberrations in the current model do not have a time-dependence. This again describes a worst-case scenario
in which the aberrations continue for a long time relative to the desired imaging duration. It is currently unknown
exactly how long a membrane will continue to vibrate in a vacuum. But, to be sure, it will be much longer than
it would otherwise be when it’s motion is damped by an ambient atmosphere.

Based on the above model, phase screens representing the aberration were generated. A sample set of four
independent realizations of the phase aberration is shown in Fig. 3.

3.2. Closed-loop simulation results

The end-to-end AO simulation models the light-weight optic case, where the phase aberrations are pupil-
conjugate. The aberrations are time-varying and were generated based on the model above. The harmonic
cutoff is the 10th harmonic. The temporal decorrelation time is one-tenth of the system frame rate. For the
simulation, the phase has 8× 8 samples in each subaperture. There are 16 subapertures across the diameter of
the pupil. Each subimage on the WFS camera is Nyquist sampled, giving the WFS one-sixteenth the spatial
resolution of the science camera. The field of view of the WFS is one-fourth the width of the science camera.
Photoelectron noise on the WFS is generated with poisson random variables. Slope estimation is then done with
SBWFS. Next, the phase is reconstructed with the Fourier transform reconstruction11 and the correction is ap-
plied with continuous-facesheet DM model. For closed-loop control the correction is calculated with a integrator
weight on the previous estimate of 0.99 and a gain on the current phase estimate. The correction is applied
with one time-step delay. For comparison, the system can be run noise-free with a point source and centroiding
on 4× 4 pixel subapertures to provide a measure of best-case performance. Because the edges of the optics are
assumed to be fixed, tip-tilt control is not done.

As mentioned above, the use of scenes can result in a gain change in the system. This is clearly evidenced
by experiments with the AO simulation code. With a fixed system gain, the ideal point-source model corrected
the dynamic phase to a lower level of residual error than some scenes were capable of. Simply increasing the
gain enabled the scenes to correct just as well. This indicates that a SBWFS AO-system may need some form
of dynamic control over the control loop gain to optimize performance.

Given gain adjustment, a reasonable scene can correct the phase to levels equivalent to that done with a
point-source WFS. Fig. 4 shows slices from steady state correction with Image 1 as the scene. The residuals
from both the point-source OA and the SBWFS Ao are extremely close. This residual exists due to temporal
and fitting errors.

Given a specific scene (Image 1 again) the illumination can be changed. Based on a standard analysis of
system error terms,1 a simplified model is constructed. The mean-square wave-front error σ2

φ is simply the
sum of two independent terms: σ2

s , which captures temporal, fitting and all other error terms in the noise-free

6



-6

-4

-2

0

2

4

6

8

0 20 40 60 80 100 120

R
ad

ia
ns

 o
f p

ha
se

Phase sample across aperture

Closed-loop correction - residuals

Optic aberration
SBWFS AO residual

Point-source AO residual

Figure 4. [Left]: Slice of the phase aberration and the residuals at timestep 49 in closed-loop simulation. [Right]: Target
image, before and after SBWFS AO correction.

simulation, and σ2
w, which captures the propagation of WFS noise. Since an image can have different amounts

of noise due to the x- and y-slope estimates, the WFS noise is given by

σ2
w =

π2

4
Np

(
σ2

x + σ2
y

2

)
, (8)

where the noise propagator Np is the number that converts WFS noise to phase residual variance. In our
simulation the conversion from slope in radians per subaperture to shift in pixels is a factor of π−1. The control
loop gain is 0.5. For this simulation Np = .667. Given this relationship, the overall residual error as a function of
illumination can be predicted. Fig. 5 shows the total residual mean-squared error versus timestep for four cases
with different levels of total light. These cases assume no background and have 50, 25, 10 and 5 counts maximum
per pixel per frame. Based on a single copy of the image, σx and σy were estimated. The right panel of the figure
shows the estimated σw (based on the above equation) and the average σw based on simulation results. Given
this particular image and simulation parameters, the AO system is very robust to low light levels. Assuming a
closed-loop σ2

s of 0.65 squared-radians, and limiting σw to 0.35, the RSS value of the slope estimation standard
deviations is 1.0 pixel. This would allow adequate closed-loop operation with as few as 10 counts per pixel per
frame with no background. This lower limit is dependent on the total error in the rest of the system and the
conversion from slope to shift, and will most likely be different for a different system.

4. SYSTEM DESIGN ISSUES

Results presented above show the feasibility of a SBWFS AO system. Several design choices were made above
that enabled successful AO operation. These included the number of subapertures, the size of the field of view
and the scaling between phase slope and image shift. All of these are necessary to establish during system design.
There are some trade-offs involved in these design choices. For example, better sampling of the wave-front mean
smaller subapertures and better phase correction, but the amount of light available is decreased, reducing SNR.

The choices of field of view and phase-to-shift scaling are intertwined. Ideally, the field of view will be large
enough, given the WFS camera pixel size, to capture images with reasonable feature content. Based on expected
phase aberrations and scene imaging properties, the expected amount of shift in both open and closed loop can
be predicted. Ideally this shift will not be more than a few pixels in open loop and not more than a few tenths
of a pixel in closed loop. This will assure best scene performance, as error standard deviaiton tends to increase
for shifts of null.

Fundamental to the ability of the AO system to work well, regardless of the scene content, is the number of
subapertures across the pupil. If the phase aberration’s power spectral density is known, the subaperture size
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should be set such that aliasing is minimized and the phase aberration can be well-corrected given the sampling
spatial frequency cutoff 1/2d. This kind of analysis would only show how well the phase could be corrected given
perfect phase measurements.

In reality, slopes are estimated from the subimages. If the phase aberration is each subaperture is dominated
by tip and tilt, the image structure will be maintained and the images simply shifted. If significant higher-
order phase aberrations exist (primarily if the subapertures are too large) then the image structure will also be
distorted, leading to poorer performance in comparing scenes and estimating slopes.

For this latter approach, atmospheric turbulence analysis provides a good place to start: determining the
amount of power in tip and tilt in a subaperture. For atmospheric turbulence it is established that 87% of
the piston-removed power in an aperture is in tip and tilt.12 The percent-power metric is equivalent to mean-
squared-error of fitting the phase aberration to a linear phase function.

This analysis was conducted to determine the number of subapertures necessary for a given optic aberration
profile. For a given phase profile and number of subapertures, Monte Carlo simulations were carried out. For a
fixed subaperture location, thousands of random realizations of the optic phase were computed from the phase
profile at adequate sampling. Three phase profiles were used. In all cases the amplitude of the higher-order
terms (harmoinics) falls off exponentially. The harmonic with normalized amplitude e−1 was set to be the 5th,
10th and 12th harmonics for these trials. For each, the piston was removed and the percent of energy in tip
and tilt was calculated. Based on histograms, the fraction of the total number of trials with at least 85% of the
energy in tip and tilt was produced. These results are shown in Fig. 6. For our simulation case above, with
sixteen subapertures and the tenth harmonic, the figure shows that 80% of the time in monte carlo simulations
the subaperture phase was very-well approximated by tip tilt. For the eight subaperture case, this was true only
40% of the time. The simulation code confirms this analysis. For the eight subaperture case in open-loop, some
subapertures see subimage degradation in addition to shifts.

What remains to be determined is a quantitative answer as to how often this 85% criterion must be met
for adequate AO performance. For the 5th harmonic cutoff (as shown in Fig. 6) for 8 or more subapertures
across the diameter of the optic, this criterion is met at least 80% of the time. For the 10th harmonic case 8
subapertures is clearly inadequate (only 40% of the time is the criterion met) but the 16-20 subaperture range
seems satisfactory.

5. TRACKING CHANGES IN SCENE CONTENT

Slope estimation with SBWFS at any step in time depends only on the subimages for that instant. Because a
reference from that timestep is used for comparison, the slope estimates contain no tip or tilt information. In the
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As the number of harmonics increases, more subapertures are necessary.

simulation of the light-weight optic the edge was constrained and tip-tilt control was not necessary. However,
tip-tilt control will be necessary in the general case if science camera images are taken at exposures longer
than the AO frame rate. Just as the shift between two subimages estimates the slope, the shift between two
temporal subimages at the same location provides tip-tilt information. This estimate, however, is susceptible to
time-varying image structure, such as moving objects or camera motion. To help prevent errors due to changing
subimage content, a method to track image motion must be developed.

5.1. Models and methods

Motion detection is achieved by thresholding the normalized variance of each pixel. Previous work has been done
using image statistics to isolate moving objects. While these methods are effective for their applications, they
either require some knowledge of the image motion which we do not have,13 require images over 10 times larger
than our resolutions,14 or require more computation power and memory than we can afford.15

A pixel’s value is modeled as a Poisson process with mean and variance equal to its noise-free intensity value
plus Poisson read noise. The mean-normalized variance provides more useful information for motion detection
because pixels of higher intensity have higher variance, but equal normalized variance, while pixels with varying
intensity have higher normalized variance. In order to differentiate truly moving pixels and not let image motion
cause edge pixels to fool us, we categorize pixels as stationary, edge, or moving. The ratio of moving to non-
moving pixels allows us to determine what type of image is being viewed: a stationary image in which camera
and scene are static, a panning image in which the camera moves over the image, or a moving image in which
the camera is static but objects, such as cars, are mobile within it. The motion detection threshold is determined
based on the probability model and expected normalized variance of each pixel type. An accurate approximation
for the expectation of the normalized variance is the expectation of the sample mean divided by the expectation
of the sample variance.

The pixel value of a stationary pixel is the sum of Poisson read-noise and the realization of a Poisson process
with parameter equal to the static noise-free pixel value. Where n is the number of samples, the expectation of
the mean-normalized variance of a stationary pixel is:

E
[
N2

n

]
=

n− 1
n

≈ 1 (9)

Random subpixel image shifts can cause edge pixels to be incorrectly flagged as moving. An edge is modeled as
being one pixel wide. The intensity of an edge pixel is a random variable that shifts from a mean equal to the
average of the intensity levels on each side of the edge. Each shift is a zero-mean Gaussian random variable with
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variance σ2
s on the order of .01 pixels. Where n is the number of samples, λ is the Poisson read-noise parameter,

α and β are the noise-free intensity levels on each side of the edge, the expectation of the mean-normalized
variance of an edge pixel is:

E
[
N2

n

]
=

n− 1
n

[
0.25α + 0.25β + λ + (α− β)2σ2

s

0.5α + 0.5β + λ

]
(10)

For an edge that goes from 0 counts to 250 counts, the expectation of the normalized variance is over 5 times
larger than the expectation for a stationary pixel.

A moving pixel begins at some intensity level and increases with a constant slope k, for n samples. Where
h is the sum of starting intensity value and λ which is the Poisson read-noise parameter, the expectation of the
mean-normalized variance of a moving pixel is:

E
[
N2

n

]
=

6(k + 2kh)(n + 1)(1− n−1) + 2k2(2n + 1)(n + 1)− 3k2(n + 1)2 − 12hk(n2 − 1)n−1 + 12h(1− n−1)
6k(n + 1) + 12h

(11)
For a moving pixel that moves from 0 counts to 250 counts with a slope of 50, the expectation of the normalized
variance is nearly 8 times larger than the expectation for an edge pixel with the same range. This large discrepancy
suggests that we should be very successful using the normalized variance for motion detection.

5.2. Results

Simulations which varied in range of peak/base values and number of samples verified the calculated, expected
values of the normalized variance.

Assuming subimages between 16× 16 and 32× 32 pixels, most moving objects, such as cars, are likely to be
on the order of 3 to 5 pixels. As such, a reasonable size for n is 5 because a car of 5 pixels takes 5 frames to
fully traverse a single pixel. Requiring more frames would be disadvantageous. In order to use SBSHWFS to find
slopes, the frames must be correlated, which is unlikely when frames are separated by many time steps. Also, if
the AO system must wait for more frames, it might not be able to correct the phase aberrations quickly enough.

The expected normalized variance for edge and moving pixels depends on range and background level.
Consequently, a good threshold depends on the illumination and background levels of the image. Too low a
threshold will result in many false alarms while too high of one will result in many misses. It is the edge
and moving pixels which cause these errors. Using the maximum and minimum of all pixel values received, we
calculate the maximum expected normalized variance for any edge pixel within the image. Because the maximum
expected normalized variance for moving pixels is over 5 times larger than for edge pixels, the threshold is 1.25
times the maximum expected normalized variance of edge pixels. This minimizes the number of misses and false
alarms

By thresholding the normalized variance of individual pixels, motion detection is successfully achieved. For
noise-free images, the motion detection is extremely accurate for 32 × 32 and 16 × 16 images (figure 5a, 5b).
These images are of a car driving down a street. The white with black border isolate the detected pixels of
the moving car. The threshold is based on the expected normalized variance of edges which makes it likely
that some edge pixels will exceed the threshold. Stationary pixels can also cause false alarms if they have high
variances due to the randomness of noise. As the signal to noise ratio decreases, the false alarms in noisy and
shifted images increases. Figure 7c shows 8 false alarms that are dispersed randomly. Assuming that most cars
are 3 to 5 pixels, it is unlikely that a single stranded pixel with high normalized variance is part of a moving
object. We lowpass filter an image mask where moving pixels are equal to 1 and non-moving pixels are equal to
0. Single pixels with high normalized variance are filtered out leaving behind pixels which are most likely to be
part of a moving car. The results of this lowpass filter technique can be seen in figure 7d. Despite the noise and
image shifts, the moving car is detected just as accurately in 7d as in the original image in 7b.

Illumination and background levels significantly affect the signal to noise ratio and, hence, the performance
of motion detection. The percentage of false alarms is defined as the number of pixels falsely marked as moving
in that frame divided by the total number of pixels in the frame. The percentage of misses is defined as the
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Figure 7. [Left]: Motion detection of a car driving on a street. The white with black border highlight the pixels detected
as moving. Top row: a) 16× 16 image;b) 32× 32 image, both with no noise. Bottom row: c) 32× 32 noisy and shifted;
d) same image with lowpass filter on results. [Right:] Plot of false alarms and misses versus angle of observation.

number of pixels not marked as moving in the noisy image divided by the number of pixels marked as moving
in the noise-free version of that frame. Motion detection performance is very consistent with exposure level, only
degrading for fewer than 50 counts per pixel. Figure 7 shows that increasing background level causes a steep
increase in false alarms. This occurs at nearly the same angle as loss of σx performance as shown in Fig. 2.
Beyond this point most scenes have poor quality, so motion detection will not be necessary since the images
may be too poor to use.

Thresholding mean-normalized variance to achieve motion detection is more successful when a small fraction
of the image is moving and when there are few sharp contrast edges. The number of false alarms decreases
significantly for these types of images. This disparity is most likely due to image shifts which cause the variance
of a pixel to increase. For pixels that are stationary and are surrounded by mostly stationary pixels, these
increases are not large enough to initiate a false alarm. However, edge pixels may shift to cause false alarms
and moving pixels may shift to cause pixels previously traversed to be marked. Fortunately, this phenomenon
does not hurt our usage of this motion detection algorithm. If images have enough motion to cause so many
false alarms, SBSHWFS will be unsuccessful for slope estimation.

Using a threshold on the mean-normalized temporal variance of individual pixels proved to be an efficient
and effective method for motion detection. While many standard image-processing techniques failed on our
low-resolution images, this method successfully detected moving objects on our 16× 16 and 32× 32 images.

6. CONCLUSIONS AND FUTURE DIRECTIONS

Scene-based wave-front sensing is a viable method for using AO without a point source. By correlating subimages
of the observed scene, slope estimates are calculated. Scene performance can be predicted with a single copy
of an image. Performance is robust to short exposures and background, until background becomes dominant in
the image. End-to-end simulations with a dynamic light-weight optic phase aberration confirm that SBWFS can
work as well as point-source AO. Further analysis is considered to find the best number of subapertures for AO
correction. Methods to track a scene content changes with time work well on even small sets of data, allowing
good identification of changing scene content for tip-tilt control.

The case of distributed aberration (i.e. horizontal path imaging) is currently under investigation. This
problem is more complex, not only due to the standard challenges of measuring and correcting distributed
aberrations but due to anisoplanatism within subimages.
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